$\theta \theta \theta \theta \theta \theta \theta \theta \theta \theta$			
A1 ${ }^{\text {a }}$			
CTE	WATT CONVERTERWADA 20054002 2002 5E B230 FA5C		
	INPUT: $\pm 200 \mathrm{~kW}$ $3 \times 400 \mathrm{~V}$ L1-L2-L3 50 Hz $200 / 1 \mathrm{~A} \mathrm{CT}$. OUTPUT: + - $\pm 10 \mathrm{Vdc}$ SUPPLY: A1-A2 230 Vac		
S1\| ${ }^{\text {L3 }}$ [2 ${ }^{\text {2 }}$	\|+	-1	${ }^{\text {A2 }}$

MEASURING TRANSDUCER
 MODULE

Type: WAxA (Watt) - Active power Type:WRxA(VAr)-Reactive power

FEATURES

* Small outlines
* High inputsensitivity
* Low response time
* Excellent linearity
* 19 outputs available
* According to EN60688

Description:

The input transformers for voltage and current separate the inputs galvanically from the converter. The signals are amplified to suitable levels and led to the multiplier. The multiplication is made by changing the voltage signal to a pulse-width modulated square wave, and the current to a voltage signal representing the amplitude of the current, thus giving a pulse area equal to the actual momentary power. Using a high frequency for the square pulses ensures an accurate measurement even with a high level of signal distortion (higher harmonics). The signal from the multiplier passes an active filter and an output circuit to ensure a low ripple and stable output signal. Output signals are short-circuit and open-circuit protected.

FUNCTION DIAGRAM

CONNECTION DIAGRAM
Rail mounting

WAAA

WABA \& WRBA

WACA \& WRCA

WADA \& WRDA

SPECIFICATIONS

INPUT	
Nominal voltage	Specify from 100 to 700 V
Max.input	1.2 xU
Inputresistance	$300 \mathrm{k} \Omega$ Uin $<200 \mathrm{~V}$
	$500 \mathrm{k} \Omega$ Uin $>200 \mathrm{~V}$
Current	
Nominal current	1 A (from .../1 A current transformer)
Or	5 A (from .../5 A current transformer)
Max. input	$1.2 \times \mathrm{I}_{\mathrm{N}}$ constant
Type .../1 A	$5 \times \mathrm{I}_{\mathrm{N}}$ for 10 sec .
Type .../5 A	$50 \times \mathrm{I}_{\mathrm{N}}$ for 1 sec .
Input resistance	
Type .../1 A	$50 \mathrm{~m} \Omega$
Type .../5 A	$5 \mathrm{~m} \Omega$
PERFORMANCE PARAMETERS TIMING	
Responsetime	<200 msec.
ELECTRICAL	
Precision	Class 0.5
Linearity	< 0.1 \%
Supplydependence	< $\pm 0.01 \% / \% \Delta U$ supply
Temp.dependence	$< \pm 0.02 \% /{ }^{\circ} \mathrm{C}$
Ripple	< 1 \% pp

OUTPUT
All output types are protected against short-circuit and opencircuit. Max. loads for accurate operation are shown in ordering information.

SUPPLY

AC supply range with transformer	24 V (From 20 110 V (From 99 230 V (From 198 400 V (From 342	
AC frequency range	45 to 440 Hz	
Power consumption	$4 \mathrm{VA}, 2 \mathrm{~W}$	
GENERAL		
Temperature range	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	
Humidity	Upto 90% RH non-condensing	
Dielectrictest voltage	Inputto AC supply	4000 VAC
	Outputto AC supply	4000 VAC
	Inputtooutput	3000 VAC
Weight	0.25 kg	

c

EMC directive 89/336:

Low voltage directive $73 / 23$:
International Standards EN50081-Emission EN50082-Immunity EN60255-Electrical Relays EN60688-Measuring transducer

CHOISE OF CURRENT TRANSFORMER

3-phase: $\frac{\text { Watt (or VAr) }}{\mathrm{U} \text { (nom. voltage) } \times \cos \varphi} \times 0.577=$ current in one phase

Chose your current transformer tothe next standard above.
Standard tranducer:
Full output Unom. $\times 1$ (nom. current) $\times 1(\cos \varphi=1)$
Calculation of full output in Watt:
1 - phase: Unom. x 1 (nom. current) $\times 1(\cos \varphi=1)$
3 - phase: Unom. x 1 (nom. current) $\times 1(\cos \varphi=1) \times \sqrt{ } 3$

ORDERING INFORMATION

EXAMPLE:

TYPE
Power measuring transducer
Active power
Reactive power

- phase (only active power)
- phase 3 \& 4 wire symmetrical load

3 - phase 3 wire asymmetrical load ("Aron" coupling)
3 - phase $3 \& 4$ wire asymmetrical load

LOAD (Watt - VAr)

The first three figures of the
oad in Watt or VAr, e.g. 250 kW

Followed by

for $\mathrm{W} / \mathrm{VAr}=100$ to 999
3 for $\mathrm{W} / \mathrm{VAr}=1 \mathrm{k} \quad$ to 9.9
4 for $\mathrm{W} / \mathrm{VAr}=10 \mathrm{k}$ to 99.9
5 for $\mathrm{W} / \mathrm{VAr}=100 \mathrm{k}$ to 999
6 for $\mathrm{W} / \mathrm{VAr}=1 \mathrm{M} 00$ to 9.99

VOLTAGE BETWEEN PHASES
SINGLE PHASE - PHASE VOLTAGE
The first three figures of the
voltage in Volt, e.g. 400 V
Followed by:
2 for $V=100$ to 999

CURRENT TRANSFORMER PRIMARY NOMINAL
The first three figures of the
current in Ampere, e.g. 200 A
Followed by:
CURRENT WITH .../1 A.
for $A=1.00$ to 9.99
1 for $A=10.0$ to 99.9
for $A=100$ to 999
3 for $A=1 \mathrm{k}$ to 9.99 k
CURRENT WITH .../5 A.
4 for $A=1.00$ to 9.99
5 for $A=10.0$ to 99.9
6 for $A=100$ to 999
7 for $A=1 k \quad$ to $9.99 k$
FREQUENCY e.g. 50 Hz
50Hz
60 Hz
OUTPUT SPECIFICATION

SUPPLY VOLTAGE
$\begin{array}{lr}\text { From } & 20 \text { to } 28 \text { VAC } \\ \text { From } & 99 \text { to } 140 \text { VAC } \\ \text { From } & 198 \text { to } 264 \text { VAC }\end{array}$
From 342 to 484 VAC

HOUSING

Rail mounting VOX 55mm

250 \qquad

400

2 \qquad

200 \qquad

5
6

$$
\begin{array}{c|}
\mathrm{A} \\
\mathrm{C} \\
\mathrm{E} \\
\mathrm{~F} \\
\mathrm{G} \\
\mathrm{H} \\
\mathrm{I}
\end{array}
$$

B024
B110
B110
B230
B230
B400

