
\qquad
\qquad

FEATURES

- Small outlines
- High input sensitivity
- Low response time
- Excellent linearity
- 19 outputs available
- According to EN60688

Description:

The input transformers for voltage and current separate the inputs galvanically from the converter. The signals are amplified to suitable levels and led to the multiplier. The multiplication is made by changing the voltage signal to a pulse-width modulated square wave, and the current to a voltage signal representing the amplitude of the current, thus giving a pulse area equal to the actual momentary power. Using a high frequency for the square pulses ensures an accurate measurement even with a high level of signal distortion (higher harmonics). The signal from the multiplier passes an active filter and an output circuit to ensure a low ripple and stable output signal. Output signals are short-circuit and open-circuit protected.

FUNCTION DIAGRAM

U - Supply

CONNECTION DIAGRAM

Rail mounting

WACA \& WRCA

WADA \& WRDA

SPECIFICATIONS

INPUT	
Nominal voltage	Specify from 100 to 700 V
Max. input	$1.2 \times \mathrm{U}_{\mathrm{N}}$
Input resistance	$300 \mathrm{k} \Omega$ Uin < 200 V
	$500 \mathrm{k} \Omega$ Uin > 200 V
Current	
Nominal current	1 A (from .../1 A current transformer)
Or	5 A (from .../5 A current transformer)
Max. input	$1.2 \times \mathrm{I}_{\mathrm{N}}$ constant
Type .../1 A	$5 \times \mathrm{I}_{\mathrm{N}}$ for 10 sec .
Type .../5 A	$50 \times \mathrm{I}_{\mathrm{N}}$ for 1 sec .
Input resistance	
Type .../1 A	$50 \mathrm{~m} \Omega$
Type .../5 A	$5 \mathrm{~m} \Omega$
PERFORMANCE PARAMETERS TIMING	
Response time	< 200 msec .
ELECTRICAL	
Precision	Class 0.5
Linearity	< 0.1 \%
Supply dependence	< ± 0.01 \% / \% $\Delta \mathrm{U}$ supply
Temp. dependence	$< \pm 0.02$ \% / ${ }^{\circ} \mathrm{C}$
Ripple	< 1 \% pp
OUTPUT	
All output types are protected against short-circuit and opencircuit. Max. loads for accurate operation are shown in ordering information.	
SUPPLY	
AC supply range	24 V (From 20 to 28 V)
with transformer	110 V (From 99 to 140 V)
	230 V (From 198 to 264 V)
	400 V (From 342 to 484 V)
AC frequency range	45 to 440 Hz
Power consumption	$4 \mathrm{VA}, 2 \mathrm{~W}$
GENERAL	
Temperature range	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Humidity	Up to 90 \% RH non-condensing
Dielectric test voltage	Input to AC supply 4000
	Output to AC supply 4000
	Input to output 3000
Weight	0.25 kg
C 1	
	International Standards
EMC directive 89/336:	EN50081-Emission
	EN50082-Immunity
Low voltage directive 73/23:	EN60255 - Electrical Relays EN60688 - Measuring transducer

CHOISE OF CURRENT TRANSFORMER

1 - phase: $\frac{\text { Watt (or VAr) }}{U \text { (nom. voltage) } \times \cos \varphi}=$ current

3 - phase: $\frac{\text { Watt (or VAr) }}{\mathrm{U} \text { (nom. voltage) } \times \cos \varphi} \times 0.577=$ current in one phase

Chose your current transformer to the next standard above.
Standard tranducer:
Full output Unom. x 1 (nom. current) $\times 1(\cos \varphi=1)$
Calculation of full output in Watt:
1 - phase: Unom. x 1 (nom. current) $\times 1(\cos \varphi=1)$
3 - phase: Unom. $x 1$ (nom. current) $\times 1(\cos \varphi=1) \times \sqrt{ } 3$

ORDERING INFORMATION

EXAMPLE:
TYPE
Power measuring transducer
Active power
Reactive power
1 - phase (only active power)
3 - phase 3 \& 4 wire symmetrical load
3 - phase 3 wire asymmetrical load ("Aron" coupling)
3 - phase $3 \& 4$ wire asymmetrical load
LOAD (Watt - VAr)
The first three figures of the
load in Watt or VAr, e.g. 250 kW
Followed by:
2 for $\mathrm{W} / \mathrm{VAr}=100$ to 999
3 for $\mathrm{W} / \mathrm{VAr}=1 \mathrm{k} \quad$ to 9.9
4 for $\mathrm{W} / \mathrm{VAr}=10 \mathrm{k}$ to 99.9
5 for $\mathrm{W} / \mathrm{VAr}=100 \mathrm{k}$ to 999
6 for $\mathrm{W} / \mathrm{VAr}=1 \mathrm{M} 00$ to 9.99

VOLTAGE BETWEEN PHASES
SINGLE PHASE - PHASE VOLTAGE
The first three figures of the
voltage in Volt, e.g. 400 V
Followed by:
2 for $V=100$ to 999

CURRENT TRANSFORMER PRIMARY NOMINAL
The first three figures of the
current in Ampere, e.g. 200 A
Followed by:
CURRENT WITH .../1 A.
0 for $A=1.00$ to 9.99
for $A=1.00$ to 9.99
for $A=10.0$ to 99.9
2 for $A=100$ to 999
3 for $A=1 \mathrm{k} \quad$ to $9.99 k$
3 for $A=1 \mathrm{k}$ to 9.99 k
CURRENT WITH .../5 A
CURRENT WITH .../5
4 for $A=1.00$ to 9.99
4 for $A=1.00$ to 9.99
5 for $A=10.0$ to 99.9
5 for $A=10.0$ to 99.9
6 for $A=100$ to 999
7 for $A=1 \mathrm{k}$ to 9.99 k
FREQUENCY e.g. 50 Hz
50 Hz
60 Hz
OUTPUT SPECIFICATION

COUPLINGS FOR MEASURING ACTIVE POWER

1 PHASE

3 PHASE, 3 WIRE SYMMETRICAL LOAD

3 PHASE, 4 WIRE SYMMETRICAL LOAD

3 PHASE, 3 WIRE ASYMMETRICAL LOAD

3 PHASE, 3 or 4 WIRE ASYMMETRICAL LOAD

COUPLINGS FOR MEASURING REACTIVE POWER

3 PHASE, 3 or 4 WIRE SYMMETRICAL LOAD

3 PHASE, 4 WIRE ASYMMETRICAL LOAD

